ACCUREASY METROLOGIA ABSOLUTA S. DE R.L. DE C.V.

Av. Don Bosco No. 41 Int. 31,
Col. El Pueblito, Corregidora
Querétaro CP 76900 México
Edgar Oswaldo Luna Calzada Phone: 524427443593

CALIBRATION

Valid To: May 31, 2023
Certificate Number: 6092.01
In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following calibrations ${ }^{1,6}$:
I. Dimensional

Parameter/Equipment	Range	$\mathrm{CMC}^{2,4}(\pm)$	Comments
Vernier, Dial and Digital Calipers ${ }^{3}$ -	Up to 1000 mm	$(11+0.0086 L) \mu \mathrm{m}$	Method: direct comparison Gage blocks
Vernier, Dial and Digital Depth Gauges -	Up to 750 mm	$(12+0.0064 L) \mu \mathrm{m}$	Method: direct comparison Gage blocks, surface plate
Vernier, Dial and Digital Height Gauges Linearity Measuring Face Scriber Parallelism Beam Squareness Base Flatness	Up to 600 mm Up to 30 mm Up to 500 mm Up to 200 mm	$\begin{aligned} & (12+0.0045 L) \mu \mathrm{m} \\ & 1.3 \mu \mathrm{~m} \\ & 5.8 \mu \mathrm{~m} \\ & 1.3 \mu \mathrm{~m} \end{aligned}$	Method: direct comparison Gage blocks Surface plate Master square Indicator

Parameter/Equipment	Range	$\mathrm{CMC}^{2,4}(\pm)$	Comments
Height Gauges ${ }^{3}$	Up to 600 mm	$(0.44+0.0027 L) \mu \mathrm{m}$	Method: direct comparison Gage blocks, surface plate
Outside Micrometers ${ }^{3}$	Up to 500 mm	$(1.1+0.0068 L) \mu \mathrm{m}$	Method: direct comparison Gage blocks, optical flats
Depth Micrometers ${ }^{3}$	Up to 300 mm	$(1.7+0.0057 L) \mu \mathrm{m}$	Method: direct comparison Gage blocks
Length Indicators (Thickness, Digital, Dial, Test, Lever) - External Measure ${ }^{3}$	Up to 100 mm	$(1.1+0.034 L) \mu \mathrm{m}$	Method: direct comparison Gage blocks
Length Indicators (Digital, Dial, Test, Lever) - Internal Measure ${ }^{3}$	Up to 100 mm	$(4.8+0.027 L) \mu \mathrm{m}$	Method: direct comparison Gage blocks
Steel Feeler Gauges ${ }^{3}$	Up to 3 mm	$0.5 \mu \mathrm{~m}$	Method: direct comparison High accuracy micrometer
Master Discs or Cylindrical Plug Gages Class: Z, ZZ or Unmarked ${ }^{3}$	Up to 5 mm (>5 to 25) mm	$\begin{array}{\|l\|l} 0.5 \mu \mathrm{~m} \\ 0.6 \mu \mathrm{~m} \end{array}$	Method: direct comparison High accuracy micrometer
Radius Gages	Up to 50.8 mm	$4.5 \mu \mathrm{~m}$	Method: direct comparison Vision system
Rules - Steel Aluminum	Up to 300 mm Up to 300 mm	$\begin{aligned} & 7.5 \mu \mathrm{~m} \\ & 13 \mu \mathrm{~m} \end{aligned}$	Method: direct comparison Vision system

Parameter/Equipment	Range	$\mathrm{CMC}^{2,4,5}(\pm)$	Comments
Glass Standard Scales	Up to 300 mm	$(1.5+0.0077 L) \mu \mathrm{m}$	Method: direct comparison Vision system
Vision Systems ${ }^{3}$ Linear Axis	X: Up to 300 mm Y: Up to 300 mm Z: Up to 150 mm	$\begin{aligned} & (0.79+0.0065 L) \mu \mathrm{m} \\ & (0.79+0.0065 L) \mu \mathrm{m} \\ & 2.7 \mu \mathrm{~m} \end{aligned}$	Method: direct comparison Glass scales Gage blocks
Profile Projectors, Optical Comparators ${ }^{3}$ Linear Axis Angle Magnification	X: Up to 300 mm Y: Up to 300 mm Up to 360° 5X to 20X	$\begin{aligned} & (1.6+0.0097 L) \mu \mathrm{m} \\ & (1.6+0.0097 L) \mu \mathrm{m} \\ & 2.4^{\prime}\left(0.04^{\circ}\right) \\ & 0.02 \% \end{aligned}$	Method: direct comparison Glass scales Angle reticle
Microscopes ${ }^{3}$ Linear Axis Angle Magnification	X: Up to 300 mm Y: Up to 300 mm Up to 360° Up to 4000X	$\begin{aligned} & (0.68+0.0081 L) \mu \mathrm{m} \\ & (0.68+0.0081 L) \mu \mathrm{m} \\ & 2.4^{\prime}\left(0.04^{\circ}\right) \\ & 0.08 \% \end{aligned}$	Method: direct comparison Glass scales Angle reticle
Coating Thickness Gages (Ferrous Metals and NonFerrous Metals) ${ }^{3}$	Up to 0.1 mm (>0.1 to 1.5) mm	$\begin{aligned} & 0.70 \mu \mathrm{~m} \\ & 1.9 \mu \mathrm{~m} \end{aligned}$	Method: direct comparison Plastic shims
Ultrasonic Thickness Gage ${ }^{3}$	Up to 25.4 mm	$14 \mu \mathrm{~m}$	Method: direct comparison Step gage

Parameter/Equipment	Range	$\mathrm{CMC}^{2,4}(\pm)$	Comments
$\mathrm{CMM}^{3}-$			Method: direct comparison
Length Measurement Error (EL)	Up to 1500 mm	$(0.37+0.0032 \mathrm{~L}) \mu \mathrm{m}$	ISO 10360-2; section $6.3,6.4$ and $6.5-$ gage blocks
Single and Multiple Stylus Contacting Probing Error (Discrete Point Measuring Mode)	20 mm	$0.28 \mu \mathrm{~m}$	ISO 10360-5; section 6.3 and $6.5-$ test sphere

II. Dimensional Testing/Calibration ${ }^{8}$

Parameter/Equipment	Range	$\mathrm{CMC}^{2,4,7}(\pm)$	Comments
$\begin{aligned} & {\text { Length }- \text { Measure }^{3,9}}^{\text {1D }} \\ & \text { 2D } \\ & \text { 3D } \\ & \text { Angle } \end{aligned}$	Up to 2500 mm $(2500 \text { X } 2500) \mathrm{mm}$ $(2500 \text { X } 2500 \text { X } 2500) \mathrm{mm}$ Up to 360°	$\begin{aligned} & (29+0.0041 L) \mu \mathrm{m} \\ & (29+0.0041 L) \mu \mathrm{m} \\ & (29+0.0041 L) \mu \mathrm{m} \\ & 0.04^{\circ} \end{aligned}$	Method: direct measurement Articulated measuring arm
Length - Measure ${ }^{9}$ 1D 2D Angle	Up to 300 mm (300 X 200) mm Up to 360°	$\begin{aligned} & (1.5+0.0096 L) \mu \mathrm{m} \\ & (1.5+0.0096 L) \mu \mathrm{m} \\ & 0.02^{\circ} \end{aligned}$	Method: direct measurement Vision system

III. Dimensional Testing ${ }^{10}$

Parameter	Range	
Workpiece Measurement ${ }^{3}, 10$		Technique / Method
1D	Up to 2500 mm	
2D	$(2500 \times 2500) \mathrm{mm}$	
3D	$(2500 \times 2500 \times 2500) \mathrm{mm}$	
Angle	Up to 360°	
Workpiece Measurement ${ }^{10}-$		
1D	Up to 300 mm	Vision system measuring arm
2D	(300 X 200) mm	
Angle	Up to 360	

III. Mechanical

Parameter/Equipment	Range	$\mathrm{CMC}^{2}(\pm)$	Comments
Rockwell Hardness Testers ${ }^{3}$	HRBW: Low Medium High HRC: Low Medium High HR30N: Low Medium High	$\begin{aligned} & \text { 1.1 HRBW } \\ & 1.0 \mathrm{HRBW} \\ & 0.52 \mathrm{HRBW} \\ & \\ & 0.48 \mathrm{HRC} \\ & 0.38 \mathrm{HRC} \\ & 0.38 \mathrm{HRC} \\ & \\ & 0.62 \mathrm{HR} 30 \mathrm{~N} \\ & 0.45 \mathrm{HR} 30 \mathrm{~N} \\ & 0.46 \mathrm{HR} 30 \mathrm{~N} \end{aligned}$	Method: indirect verification per ISO 6508-2 Hardness test blocks

Parameter/Equipment	Range	$\mathrm{CMC}^{2}(\pm)$	Comments
Rockwell Hardness Testers ${ }^{3}$ (cont)	HR45N: Low Medium High	$\begin{aligned} & 0.58 \text { HR45N } \\ & 0.43 \text { HR45N } \\ & 0.40 \text { HR45N } \end{aligned}$	Method: indirect verification per ISO 6508-2 Hardness test blocks
Brinell Hardness Testers ${ }^{3}$	HBW 5/750: Low Medium High HBW 10/3000: Low Medium High	3.1 HBW 5/750 7.8 HBW 5/750 12 HBW 5/750 1.7 HBW 10/3000 4.0 HBW 10/3000 8.4 HBW 10/3000	Method: indirect verification per ISO 6506-2 Hardness test blocks

${ }^{1}$ This laboratory offers commercial calibration and field calibration services, where noted.
${ }^{2}$ Calibration and Measurement Capability Uncertainty (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. CMCs represent expanded uncertainties expressed at approximately the 95% level of confidence, usually using a coverage factor of $\mathrm{k}=2$. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.
${ }^{3}$ Field calibration service is available for this calibration. Please note the actual measurement uncertainties achievable on a customer's site can normally be expected to be larger than the CMC found on the A2LA Scope. Allowance must be made for aspects such as the environment at the place of calibration and for other possible adverse effects such as those caused by transportation of the calibration equipment. The usual allowance for the actual uncertainty introduced by the item being calibrated, (e.g., resolution) must also be considered and this, on its own, could result in the actual measurement uncertainty achievable on a customer's site being larger than the CMC.
${ }^{4}$ In the statement of CMC, L is the numerical value of the nominal length of the device measured in millimeters.
${ }^{5}$ In the statement of CMC, percentages are percentage of reading, unless otherwise indicated.
${ }^{6}$ This scope meets A2LA's P112 Flexible Scope Policy.
${ }^{7}$ The type of instrument or material being calibrated is defined by the parameter. This indicates the laboratory is capable of calibrating instruments that measure or generate the values in the ranges indicated for the listed measurement parameter.
${ }^{8}$ This laboratory offers commercial dimensional testing/calibration service.
${ }^{9}$ This laboratory meets R205 - Specific Requirements: Calibration Laboratory Accreditation Program for the types of dimensional tests listed above and is considered equivalent to that of a calibration.
${ }^{10}$ This test is not equivalent to that of a calibration.

Accredited Laboratory

A2LA has accredited

ACCUREASY METROLOGIA ABSOLUTA S. DE R.L. DE C.V.

Querétaro, MEXICO

for technical competence in the field of

Calibration

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This laboratory also meets R205 - Specific Requirements: Calibration Laboratory Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 25th day of March 2022.

Vice President, Accreditation Services For the Accreditation Council
Certificate Number 6092.01
Valid to May 31, 2023

